Format

Send to

Choose Destination
Cell Calcium. 2016 Apr;59(4):198-207. doi: 10.1016/j.ceca.2016.02.008. Epub 2016 Mar 4.

Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

Author information

1
EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France.
2
Institut de Biologie Valrose (iBV), CNRS UMR7277, Inserm U1091, UNS 28, Avenue Valrose, 06108 Nice, France.
3
Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France.
4
EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; Service de cardiologie, CHRU de Tours, 2 Bd Tonnellé, F-37032 Tours, France.
5
EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; UFR des Sciences Pharmaceutiques, Av Monge, F-37000 Tours, France. Electronic address: florence.velge-roussel@univ-tours.fr.

Abstract

Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.

KEYWORDS:

Dendritic cell; Human; KCa3.1/SK4/IK1; Migration

PMID:
27020659
DOI:
10.1016/j.ceca.2016.02.008
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center