Format

Send to

Choose Destination
Mol Biol Evol. 2016 Jul;33(7):1807-17. doi: 10.1093/molbev/msw058. Epub 2016 Mar 26.

Genomic Locations of Conserved Noncoding Sequences and Their Proximal Protein-Coding Genes in Mammalian Expression Dynamics.

Author information

1
Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
2
Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan saitounr@nig.ac.jp.

Abstract

Experimental studies have found the involvement of certain conserved noncoding sequences (CNSs) in the regulation of the proximal protein-coding genes in mammals. However, reported cases of long range enhancer activities and inter-chromosomal regulation suggest that proximity of CNSs to protein-coding genes might not be important for regulation. To test the importance of the CNS genomic location, we extracted the CNSs conserved between chicken and four mammalian species (human, mouse, dog, and cattle). These CNSs were confirmed to be under purifying selection. The intergenic CNSs are often found in clusters in gene deserts, where protein-coding genes are in paucity. The distribution pattern, ChIP-Seq, and RNA-Seq data suggested that the CNSs are more likely to be regulatory elements and not corresponding to long intergenic noncoding RNAs. Physical distances between CNS and their nearest protein coding genes were well conserved between human and mouse genomes, and CNS-flanking genes were often found in evolutionarily conserved genomic neighborhoods. ChIP-Seq signal and gene expression patterns also suggested that CNSs regulate nearby genes. Interestingly, genes with more CNSs have more evolutionarily conserved expression than those with fewer CNSs. These computationally obtained results suggest that the genomic locations of CNSs are important for their regulatory functions. In fact, various kinds of evolutionary constraints may be acting to maintain the genomic locations of CNSs and protein-coding genes in mammals to ensure proper regulation.

KEYWORDS:

conserved noncoding sequence; gene expression; mammalian genome; physical distance.; regulation

PMID:
27017584
DOI:
10.1093/molbev/msw058
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center