Format

Send to

Choose Destination
See comment in PubMed Commons below
Pharmacol Ther. 2016 May;161:52-66. doi: 10.1016/j.pharmthera.2016.03.005. Epub 2016 Mar 22.

Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

Author information

1
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA. Electronic address: zhangym197951@126.com.
2
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA. Electronic address: ren.jun@zs-hospital.sh.cn.

Abstract

Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.

KEYWORDS:

Adipose tissue; Cardiac; Histone modification; Liver; Methylation; Obesity

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center