Send to

Choose Destination
Sci Rep. 2016 Mar 23;6:23540. doi: 10.1038/srep23540.

Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis).

Author information

Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun, Danzhou, Hainan 571737, China.
Tsinghua-Peking Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Tsinghua Park No. 1, Haidian District, Beijing 100084, China.
State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China.


Tapping panel dryness (TPD) is a serious threat to natural rubber yields from rubber trees, but the molecular mechanisms underlying TPD remain poorly understood. To identify TPD-related genes and reveal these molecular mechanisms, we sequenced and compared the transcriptomes of bark between healthy and TPD trees. In total, 57,760 assembled genes were obtained and analyzed in details. In contrast to healthy rubber trees, 5652 and 2485 genes were up- or downregulated, respectively, in TPD trees. The TPD-related genes were significantly enriched in eight GO terms and five KEGG pathways and were closely associated with ROS metabolism, programmed cell death and rubber biosynthesis. Our results suggest that rubber tree TPD is a complex process involving many genes. The observed lower rubber yield from TPD trees might result from lower isopentenyl diphosphate (IPP) available for rubber biosynthesis and from downregulation of the genes in post-IPP steps of rubber biosynthesis pathway. Our results not only extend our understanding of the complex molecular events involved in TPD but also will be useful for developing effective measures to control TPD of rubber trees.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center