Send to

Choose Destination
J Cell Biol. 2016 Mar 28;212(7):815-27. doi: 10.1083/jcb.201510083. Epub 2016 Mar 21.

Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes.

Author information

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany


Centriole elimination is an essential process that occurs in female meiosis of metazoa to reset centriole number in the zygote at fertilization. How centrioles are eliminated remains poorly understood. Here we visualize the entire elimination process live in starfish oocytes. Using specific fluorescent markers, we demonstrate that the two older, mother centrioles are selectively removed from the oocyte by extrusion into polar bodies. We show that this requires specific positioning of the second meiotic spindle, achieved by dynein-driven transport, and anchorage of the mother centriole to the plasma membrane via mother-specific appendages. In contrast, the single daughter centriole remaining in the egg is eliminated before the first embryonic cleavage. We demonstrate that these distinct elimination mechanisms are necessary because if mother centrioles are artificially retained, they cannot be inactivated, resulting in multipolar zygotic spindles. Thus, our findings reveal a dual mechanism to eliminate centrioles: mothers are physically removed, whereas daughters are eliminated in the cytoplasm, preparing the egg for fertilization.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center