Format

Send to

Choose Destination
Antiviral Res. 2016 Jun;130:69-80. doi: 10.1016/j.antiviral.2016.03.010. Epub 2016 Mar 18.

Zika virus: History, emergence, biology, and prospects for control.

Author information

1
Institute for Human Infections and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston TX, USA; Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston TX, USA. Electronic address: sweaver@utmb.edu.
2
Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil; Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil.
3
Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
4
Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
5
Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA.
6
Department of Biochemistry & Molecular Biology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
7
Institute for Human Infections and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston TX, USA; Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston TX, USA.

Abstract

Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics.

PMID:
26996139
PMCID:
PMC4851879
DOI:
10.1016/j.antiviral.2016.03.010
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center