Format

Send to

Choose Destination
PLoS Negl Trop Dis. 2016 Mar 17;10(3):e0004551. doi: 10.1371/journal.pntd.0004551. eCollection 2016 Mar.

Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis.

Author information

1
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
2
Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom.

Abstract

BACKGROUND:

Although a vaccine could be available as early as 2016, vector control remains the primary approach used to prevent dengue, the most common and widespread arbovirus of humans worldwide. We reviewed the evidence for effectiveness of vector control methods in reducing its transmission.

METHODOLOGY/PRINCIPAL FINDINGS:

Studies of any design published since 1980 were included if they evaluated method(s) targeting Aedes aegypti or Ae. albopictus for at least 3 months. Primary outcome was dengue incidence. Following Cochrane and PRISMA Group guidelines, database searches yielded 960 reports, and 41 were eligible for inclusion, with 19 providing data for meta-analysis. Study duration ranged from 5 months to 10 years. Studies evaluating multiple tools/approaches (23 records) were more common than single methods, while environmental management was the most common method (19 studies). Only 9/41 reports were randomized controlled trials (RCTs). Two out of 19 studies evaluating dengue incidence were RCTs, and neither reported any statistically significant impact. No RCTs evaluated effectiveness of insecticide space-spraying (fogging) against dengue. Based on meta-analyses, house screening significantly reduced dengue risk, OR 0.22 (95% CI 0.05-0.93, p = 0.04), as did combining community-based environmental management and water container covers, OR 0.22 (95% CI 0.15-0.32, p<0.0001). Indoor residual spraying (IRS) did not impact significantly on infection risk (OR 0.67; 95% CI 0.22-2.11; p = 0.50). Skin repellents, insecticide-treated bed nets or traps had no effect (p>0.5), but insecticide aerosols (OR 2.03; 95% CI 1.44-2.86) and mosquito coils (OR 1.44; 95% CI 1.09-1.91) were associated with higher dengue risk (p = 0.01). Although 23/41 studies examined the impact of insecticide-based tools, only 9 evaluated the insecticide susceptibility status of the target vector population during the study.

CONCLUSIONS/SIGNIFICANCE:

This review and meta-analysis demonstrate the remarkable paucity of reliable evidence for the effectiveness of any dengue vector control method. Standardised studies of higher quality to evaluate and compare methods must be prioritised to optimise cost-effective dengue prevention.

PMID:
26986468
PMCID:
PMC4795802
DOI:
10.1371/journal.pntd.0004551
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center