Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 2016 Apr 6;90(1):43-55. doi: 10.1016/j.neuron.2016.02.021. Epub 2016 Mar 10.

Psychiatric Risk Gene Transcription Factor 4 Regulates Intrinsic Excitability of Prefrontal Neurons via Repression of SCN10a and KCNQ1.

Author information

1
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA.
2
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neurology and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
3
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
4
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
5
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. Electronic address: brady.maher@libd.org.

Abstract

Transcription Factor 4 (TCF4) is a clinically pleiotropic gene associated with schizophrenia and Pitt-Hopkins syndrome (PTHS). To gain insight about the neurobiology of TCF4, we created an in vivo model of PTHS by suppressing Tcf4 expression in rat prefrontal neurons immediately prior to neurogenesis. This cell-autonomous genetic insult attenuated neuronal spiking by increasing the afterhyperpolarization. At the molecular level, using a novel technique called iTRAP that combined in utero electroporation and translating ribosome affinity purification, we identified increased translation of two ion channel genes, Kcnq1 and Scn10a. These ion channel candidates were validated by pharmacological rescue and molecular phenocopy. Remarkably, similar excitability deficits were observed in prefrontal neurons from a Tcf4(+/tr) mouse model of PTHS. Thus, we identify TCF4 as a regulator of neuronal intrinsic excitability in part by repression of Kcnq1 and Scn10a and suggest that this molecular function may underlie pathophysiology associated with neuropsychiatric disorders.

PMID:
26971948
PMCID:
PMC4824652
[Available on 2017-04-06]
DOI:
10.1016/j.neuron.2016.02.021
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center