Format

Send to

Choose Destination
PLoS One. 2016 Mar 9;11(3):e0151180. doi: 10.1371/journal.pone.0151180. eCollection 2016.

Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex.

Author information

1
UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
2
Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, United Kingdom.
3
UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom.

Abstract

A key experimental approach in neuroscience involves measuring neuronal activity in behaving animals with extracellular chronic recordings. Such chronic recordings were initially made with single electrodes and tetrodes, and are now increasingly performed with high-density, high-count silicon probes. A common way to achieve long-term chronic recording is to attach the probes to microdrives that progressively advance them into the brain. Here we report, however, that such microdrives are not strictly necessary. Indeed, we obtained high-quality recordings in both head-fixed and freely moving mice for several months following the implantation of immobile chronic probes. Probes implanted into the primary visual cortex yielded well-isolated single units whose spike waveform and orientation tuning were highly reproducible over time. Although electrode drift was not completely absent, stable waveforms occurred in at least 70% of the neurons tested across consecutive days. Thus, immobile silicon probes represent a straightforward and reliable technique to obtain stable, long-term population recordings in mice, and to follow the activity of populations of well-isolated neurons over multiple days.

PMID:
26959638
PMCID:
PMC4784879
DOI:
10.1371/journal.pone.0151180
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center