Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Metab. 2016 Mar 8;23(3):529-40. doi: 10.1016/j.cmet.2016.02.002.

A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction.

Author information

  • 1Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
  • 2Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China.
  • 3State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China.
  • 4Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
  • 5Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
  • 6Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China. Electronic address: jdhan@picb.ac.cn.

Abstract

Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR.

PMID:
26959186
PMCID:
PMC5110149
DOI:
10.1016/j.cmet.2016.02.002
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center