Format

Send to

Choose Destination
J Steroid Biochem Mol Biol. 2017 May;169:69-76. doi: 10.1016/j.jsbmb.2016.03.003. Epub 2016 Mar 4.

Effect of vitamin E on 24(S)-hydroxycholesterol-induced necroptosis-like cell death and apoptosis.

Author information

1
Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
2
Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan. Electronic address: nnoguchi@mail.doshisha.ac.jp.

Abstract

24(S)-Hydroxycholesterol (24S-OHC) has diverse physiological and pathological functions. In particular, cytotoxic effects of 24S-OHC in neuronal cells are important in development of neurodegenerative diseases. 24S-OHC induces necroptosis-like cell death in SH-SY5Y cells expressing little caspase-8. In the present study, 24S-OHC was found to induce apoptosis as determined by caspase-3 activation in all-trans-retinoic acid (atRA)-treated SH-SY5Y cells in which expression of caspase-8 was induced. 24S-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3) in SH-SY5Y cells regardless of whether cells were treated with atRA. In contrast, cumene hydroperoxide (CumOOH)-induced cell death was significantly inhibited by α-Toc and α-Toc3. In atRA-treated SH-SY5Y cells, generation of reactive oxygen species (ROS) was induced by stimulation with CumOOH but was not induced by stimulation with 24S-OHC. These results suggest that inhibition of 24S-OHC-induced cell death by α-Toc cannot be explained by its radical scavenging antioxidant activity. Esterification of 24S-OHC followed by lipid droplet (LD) formation due to acyl-CoA:cholesterol acyltransferase 1 (ACAT1) are key events in 24S-OHC-induced cell death in atRA-treated SH-SY5Y cells as demonstrated by inhibition of cell death by ACAT1 inhibitor. LD number was not changed by treatment with either α-Toc or α-Toc3. The different physical properties of α-Toc and α-Toc3 may account for their different inhibitory effects on 24S-OHC-induced cell death.

KEYWORDS:

24(S)-hydroxycholesterol; Caspase-8; Cell death; Lipid droplet; α-Tocopherol; α-Tocotrienol

PMID:
26953980
DOI:
10.1016/j.jsbmb.2016.03.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center