Format

Send to

Choose Destination
Contrast Media Mol Imaging. 2016 May;11(3):236-44. doi: 10.1002/cmmi.1686. Epub 2016 Feb 29.

Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene.

Author information

1
Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
2
Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
3
Centre for Imaging Sciences, Oxford Road, University of Manchester, Manchester, UK.

Abstract

Magnetic resonance (MR) reporter genes have the potential for tracking the biodistribution and fate of cells in vivo, thus allowing the safety, efficacy and mechanisms of action of cell-based therapies to be comprehensively assessed. In this study, we evaluate the effectiveness of the iron importer transferrin receptor-1 (TfR1) as an MR reporter gene in the model cell line CHO-K1. Overexpression of the TfR1 transgene led to a reduction in the levels of endogenous TfR1 mRNA, but to a 60-fold increase in total TfR1 protein levels. Although the mRNA levels of ferritin heavy chain-1 (Fth1) did not change, Fth1 protein levels increased 13-fold. The concentration of intracellular iron increased significantly, even when cells were cultured in medium that was not supplemented with iron and the amount of iron in the extracellular environment was thus at physiological levels. However, we found that, by supplementing the cell culture medium with ferric citrate, a comparable degree of iron uptake and MR contrast could be achieved in control cells that did not express the TfR1 transgene. Sufficient MR contrast to enable the cells to be detected in vivo following their administration into the midbrain of chick embryos was obtained irrespective of the reporter gene. We conclude that TfR1 is not an effective reporter and that, to track the biodistribution of cells with MR imaging in the short term, it is sufficient to simply culture cells in the presence of ferric citrate.

KEYWORDS:

CHO-K1; MRI; cell tracking; chick embryo; ferritin; reporter gene; transferrin receptor

PMID:
26929139
PMCID:
PMC4981909
DOI:
10.1002/cmmi.1686
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center