Format

Send to

Choose Destination
J Clin Invest. 2016 Apr 1;126(4):1425-37. doi: 10.1172/JCI74997. Epub 2016 Feb 29.

Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin.

Abstract

The adult kidney plays a central role in erythropoiesis and is the main source of erythropoietin (EPO), an oxygen-sensitive glycoprotein that is essential for red blood cell production. Decreases of renal pO2 promote hypoxia-inducible factor 2-mediated (HIF-2-mediated) induction of EPO in peritubular interstitial fibroblast-like cells, which serve as the cellular site of EPO synthesis in the kidney. It is not clear whether HIF signaling in other renal cell types also contributes to the regulation of EPO production. Here, we used a genetic approach in mice to investigate the role of renal epithelial HIF in erythropoiesis. Specifically, we found that HIF activation in the proximal nephron via induced inactivation of the von Hippel-Lindau tumor suppressor, which targets the HIF-α subunit for proteasomal degradation, led to rapid development of hypoproliferative anemia that was associated with a reduction in the number of EPO-producing renal interstitial cells. Moreover, suppression of renal EPO production was associated with increased glucose uptake, enhanced glycolysis, reduced mitochondrial mass, diminished O2 consumption, and elevated renal tissue pO2. Our genetic analysis suggests that tubulointerstitial cellular crosstalk modulates renal EPO production under conditions of epithelial HIF activation in the kidney.

PMID:
26927670
PMCID:
PMC4811147
DOI:
10.1172/JCI74997
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center