(A) The number of births for 1,000 people in each US state. Birth rate is defined as the number of births for 1,000 people. (B) We use Google Correlate to find terms for which the number of searches is higher in U.S. states with higher birth rates. Similarly, we identify terms for which the number of searches is higher in states with lower birth rates. Here, we list the 31 terms which showed the strongest positive correlation (left) and negative correlation (right) with state wide birth rate. To determine the significance of these correlations, we generate 1,000 random samples from a multivariate Gaussian distribution where states which are closer together tend to have a similar value. We submit these samples to Google Correlate and build a distribution of correlation coefficients for each of the 31 top most search terms. We depict the strength of correlation required for the correlation to be significant at the p < 0.05 and p < 0.01 level, given this null hypothesis distribution. (C) To allow us to generalise beyond individual search terms, we conduct an online survey asking participants to identify the main topic in each list of 31 terms. Here, we depict all survey responses which account for more than 5% of submitted responses. Our results suggest that users in states with higher birth rates search for more information about pregnancy, while those in states with lower birth rates search for more information about cats (“baby car seat”, p = 0.051, all remaining ps <0.05).