Send to

Choose Destination
Endocrinology. 2016 May;157(5):2080-92. doi: 10.1210/en.2015-1913. Epub 2016 Feb 24.

Modeling the Male Reproductive Endocrine Axis: Potential Role for a Delay Mechanism in the Inhibitory Action of Gonadal Steroids on GnRH Pulse Frequency.

Author information

University of Western Australia Institute of Agriculture and School of Animal Biology (T.R.F., D.B., G.B.M.), School of Medicine and Pharmacology (P.H.R.B.), and Faculty of Engineering, Computing, and Mathematics (P.H.R.B.), The University of Western Australia, Crawley 6009, Australia.


We developed a compartmental model so we could test mechanistic concepts in the control of the male reproductive endocrine axis. Using SAAM II computer software and a bank of experimental data from male sheep, we began by modeling GnRH-LH feed-forward and LH-T feedback. A key assumption was that the primary control signal comes from a hypothetical neural network (the PULSAR) that emits a digital (pulsatile) signal of variable frequency that drives GnRH secretion in square wave-like pulses. This model produced endocrine profiles that matched experimental observations for the testis-intact animal and for changes in GnRH pulse frequency after castration and T replacement. In the second stage of the model development, we introduced a delay in the negative feedback caused by the aromatization of T to estradiol at the brain level, a concept supported by empirical observations. The simulations showed how changes in the process of aromatization could affect the response of the pulsatile signal to inhibition by steroid feedback. The sensitivity of the PULSAR to estradiol was a critical factor, but the most striking observation was the effect of time delays. With longer delays, there was a reduction in the rate of aromatization and therefore a decrease in local estradiol concentrations, and the outcome was multiple-pulse events in the secretion of GnRH/LH, reflecting experimental observations. In conclusion, our model successfully emulates the GnRH-LH-T-GnRH loop, accommodates a pivotal role for central aromatization in negative feedback, and suggests that time delays in negative feedback are an important aspect of the control of GnRH pulse frequency.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center