Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 2016 Mar 2;89(5):1031-45. doi: 10.1016/j.neuron.2016.01.027. Epub 2016 Feb 18.

Cross-Modality Sharpening of Visual Cortical Processing through Layer-1-Mediated Inhibition and Disinhibition.

Author information

1
Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA.
2
Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
3
Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Electronic address: liizhang@usc.edu.
4
Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Electronic address: htao@usc.edu.

Abstract

Cross-modality interaction in sensory perception is advantageous for animals' survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3, but not L4, excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/L3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron- and L2/L3 VIP-cell-mediated inhibitory and disinhibitory circuits.

KEYWORDS:

Ca(2+) imaging; auditory cortex; cross-modal interaction; interneuron; in vivo patch-clamp recording; primary visual cortex

Comment in

PMID:
26898778
PMCID:
PMC4874809
[Available on 2017-03-02]
DOI:
10.1016/j.neuron.2016.01.027
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center