Format

Send to

Choose Destination
Exp Ther Med. 2016 Jan;11(1):147-153. Epub 2015 Nov 4.

Variations in oxidative stress markers in elite basketball players at the beginning and end of a season.

Author information

1
Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece.
2
Department of Trauma Research, St. Anthony Hospital, Lakewood, CO 80228, USA; Department of Trauma Research, Swedish Medical Center, Englewood, CO 80113, USA; Department of Trauma Research, Medical Center of Plano, Plano, TX 75075, USA; Luoxis Diagnostics, Inc., Englewood, CO 80112, USA.
3
Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece.
4
Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece.
5
Standard Centre of Bioassays, 'Hartografoi Hygeias', Athens 15124, Greece.

Abstract

The aim of the present study was to examine the changes occuring in the redox status in male basketball players at the beginning and end of a highly competitive season. For this purpose, the redox status of 14 professional athletes of a European basketball club was examined at 2 different time points, at the beginning (phase 1) and at the end of the season (phase 2). The redox status was assessed in blood using conventional oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARB) and the total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. Moreover, a new static oxidation-reduction potential marker (sORP) was assessed in plasma. Our results revealed that sORP was significantly increased by 9.6% and GSH levels were significantly decreased by 35.0% at phase 2 compared to phase 1, indicating the induction of oxidative stress due to excessive exercise. Moreover, TAC was significantly increased by 12.9% at phase 2 compared to phase 1, indicating the activation of adaptive responses for counteracting oxidative stress. The CARB and TBARS levels were not significantly altered between the 2 phases, although there was a significant correlation (r=0.798) between the sORP and CARB levels. Furthermore, the variations in these markers between athletes were examined. We found that 3 markers exhibited a similar response between athletes, that is, sORP was increased in all 14 athletes, TAC was increased in 13 and the GSH levels were decreased in 14. However, the other 3 markers (i.e., TBARS, CARB and CAT) exhibited marked variations between the athletes, suggesting that the optimal approach with which to counteract (e.g., antioxidant supplementation) the observed increase in oxidative stress is the individualized examination of the redox status of athletes using a series of markers. This would allow the identification of athletes affected by severe oxidative stress and inflammation, and would thus indicate when necessary intervention measures are required to improve their health and performance.

KEYWORDS:

basketball; glutathione; oxidation-reduction potential; oxidative stress

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center