Format

Send to

Choose Destination
J Bioenerg Biomembr. 1989 Dec;21(6):635-47.

The sodium cycle: a novel type of bacterial energetics.

Author information

1
Department of Bioenergetics, Moscow State University, USSR.

Abstract

The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps (delta mu Na+ generators) are described, i.e., Na+ -motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The delta mu Na+ formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. In Vibrio alginolyticus, it was found that delta mu Na+, generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). In Propionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, in V. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+ -motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerant Bacillus FTU, there are H+ - and Na+ -motive terminal oxidases. Sometimes, the Na+ -translocating enzyme strongly differs from its H+ -translocating homolog. So, the Na+ -motive and H+ -motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+ -motive and Na+ -motive terminal oxidases differ in that the former is of aa3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the same P. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary delta mu Na+ generator(s) and delta mu Na+ consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera: Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcina, etc. Thus, the "sodium world" seems to occupy a rather extensive area in the biosphere.

PMID:
2687258
DOI:
10.1007/bf00762683
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center