Send to

Choose Destination
Diabetologia. 1989 Nov;32(11):769-73.

Human interleukin-1 beta induced stimulation of insulin release from rat pancreatic islets is accompanied by an increase in mitochondrial oxidative events.

Author information

Department of Medical Cell Biology, Uppsala University, Sweden.


Acute exposure of pancreatic islets to interleukin-1 beta results in an increase in insulin release, while an extension of the exposure time induces a functional suppression and eventually, destruction of the B-cells. We have recently suggested that the interleukin-1 beta induced inhibition of islet function is mediated through an impairment in oxidative metabolism. The aim of the current study was to investigate if the acute, stimulatory effects of interleukin-1 beta on islet function could also be related to changes in the substrate metabolism. For this purpose, rat islets were exposed for 90-120 min to 30 pmol/l human recombinant interleukin-1 beta (biological activity of 2.5 U/ml) and their function and metabolism characterized during this period. The cytokine did not increase insulin release in the presence of 1.7 or 5.5 mmol/l glucose but in both the presence of 16.7 mmol/l glucose or 10 mmol/l leucine + 2 mmol/l glutamine there was a 50% increase in insulin release. Interleukin-1 beta exposure increased the oxidation of D-[U-14C]glucose at 5.5 mmol/l glucose by 25% and at 16.7 mmol/l glucose by 60%. Carbohydrate and amino acid metabolism were further examined in the presence of D-[5-3H]glucose, D-[6-14C]glucose, [1-14C]pyruvate, L-[U-14C]glutamine, L-[U-14C]leucine and L-[1-14C]leucine. There was no difference between control islets and interleukin-1 beta exposed islets in terms of D-[5-3H]glucose utilization or [1-14C]pyruvate decarboxylation, but the oxidation of D-[6-14C]glucose was increased by 64% in the interleukin-1 beta exposed islets.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center