Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff

Environ Technol. 2016 Sep;37(18):2265-72. doi: 10.1080/09593330.2016.1147610. Epub 2016 Mar 2.

Abstract

Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.

Keywords: Heavy metals removal; green infrastructure; low-impact development; removal; stormwater management; urban runoff.

MeSH terms

  • Environmental Monitoring / methods
  • Metals, Heavy / analysis
  • Metals, Heavy / chemistry
  • Metals, Heavy / isolation & purification*
  • Rain / chemistry*
  • Water Movements
  • Water Pollutants, Chemical / analysis
  • Water Pollutants, Chemical / chemistry
  • Water Pollutants, Chemical / isolation & purification*
  • Water Purification / methods*

Substances

  • Metals, Heavy
  • Water Pollutants, Chemical