Format

Send to

Choose Destination
Met Ions Life Sci. 2016;16:291-324. doi: 10.1007/978-3-319-21756-7_9.

Roles and Transport of Sodium and Potassium in Plants.

Author information

1
Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France.
2
Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France. sentenac@supagro.inra.fr.

Abstract

The two alkali cations Na(+) and K(+) have similar relative abundances in the earth crust but display very different distributions in the biosphere. In all living organisms, K(+) is the major inorganic cation in the cytoplasm, where its concentration (ca. 0.1 M) is usually several times higher than that of Na(+). Accumulation of Na(+) at high concentrations in the cytoplasm results in deleterious effects on cell metabolism, e.g., on photosynthetic activity in plants. Thus, Na(+) is compartmentalized outside the cytoplasm. In plants, it can be accumulated at high concentrations in vacuoles, where it is used as osmoticum. Na(+) is not an essential element in most plants, except in some halophytes. On the other hand, it can be a beneficial element, by replacing K(+) as vacuolar osmoticum for instance. In contrast, K(+) is an essential element. It is involved in electrical neutralization of inorganic and organic anions and macromolecules, pH homeostasis, control of membrane electrical potential, and the regulation of cell osmotic pressure. Through the latter function in plants, it plays a role in turgor-driven cell and organ movements. It is also involved in the activation of enzymes, protein synthesis, cell metabolism, and photosynthesis. Thus, plant growth requires large quantities of K(+) ions that are taken up by roots from the soil solution, and then distributed throughout the plant. The availability of K(+) ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. In contrast, due to natural salinity or irrigation with poor quality water, detrimental Na(+) concentrations, toxic for all crop species, are present in many soils, representing 6 % to 10 % of the earth's land area. Three families of ion channels (Shaker, TPK/KCO, and TPC) and 3 families of transporters (HAK, HKT, and CPA) have been identified so far as contributing to K(+) and Na(+) transport across the plasmalemma and internal membranes, with high or low ionic selectivity. In the model plant Arabidopsis thaliana, these families gather at least 70 members. Coordination of the activities of these systems, at the cell and whole plant levels, ensures plant K(+) nutrition, use of Na(+) as a beneficial element, and adaptation to saline conditions.

KEYWORDS:

Channel; Enzyme; Membrane transport; Plant; Potassium; Sodium; Transporter; Turgor

PMID:
26860305
DOI:
10.1007/978-3-319-21756-7_9
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center