Format

Send to

Choose Destination
Cell Med. 2013 Feb 7;5(1):17-28. doi: 10.3727/215517913X658936. eCollection 2013 Aug 10.

Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy.

Author information

1
College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea.
2
† College of Pharmacy, Chungbuk National University , Cheongju , Republic of Korea.
3
‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea.

Abstract

Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 10(5) cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41-44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs' anti-inflammatory activity and release of growth and neurotrophic factors.

KEYWORDS:

Adipose tissue-derived mesenchymal stem cell (ASC); Anti-inflammation; Cognition; Differentiation; Growth/neurotrophic factor; Neonatal hypoxic-ischemic encephalopathy (HIE); Neurobehavior

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center