Format

Send to

Choose Destination
Nature. 2016 Feb 11;530(7589):211-4. doi: 10.1038/nature16512. Epub 2016 Feb 3.

Biomass resilience of Neotropical secondary forests.

Author information

1
Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.
2
PO Box 23360, Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, Puerto Rico.
3
Spatial Ecology and Conservation Lab, Department of Geography, University of Alabama, Tuscaloosa, Alabama 35487, USA.
4
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP58190, Morelia, Michoacán, México.
5
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
6
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA.
7
Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.
8
SI ForestGEO, Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancón, Panamá, Panamá
9
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
10
Institute for Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany.
11
Departamento de Botanica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil.
12
Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2A, Parque Industrial Lerma, Campeche, Campeche, CP 24500, México.
13
Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70130, USA.
14
Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancón, Panamá, Panamá
15
Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK.
16
Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, USA.
17
Centro de Investigación Científica de Yucatán, AC, Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México.
18
Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta T6G 2E3, Canada.
19
Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil.
20
Fondo Patrimonio Natural para la Biodiversidad y Areas Protegidas, Calle 72 No. 12-65 piso 6, Bogotá, Colombia.
21
Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, CEP 69067-375, Brazil.
22
Centre for Crop Systems Analysis, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands.
23
Knowledge, Technology and Innovation Group, Wageningen University, PO Box 8130, 6700 EW Wageningen, The Netherlands.
24
Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936 - Aleixo, 69060-001 Manaus, Brazil.
25
Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA.
26
Department of Environmental Studies, Purchase College (State University of New York), Purchase, New York 10577, USA.
27
Instituto Boliviano de Investigación Forestal (IBIF), FCA-UAGRM, Casilla 6204, Santa Cruz de la Sierra, Bolivia.
28
World Agroforestry Centre (ICRAF), PO Box 30677 - 00100, Nairobi, Kenya.
29
Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin 53706, USA.
30
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México 04510 DF, México.
31
Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA.
32
Section of Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark.
33
Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, No. 321, São Paulo, CEP 05508-090, Brazil.
34
Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Itabuna-BA, 45613-204, Brazil.
35
Department of Ecology, Evolution, &Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA.
36
Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.
37
School of Social Sciences, Geography Area, Universidad Pedagogica y Tecnologica de Colombia (UPTC), Tunja, Colombia.
38
Department of Geography, 4841 Ellison Hall, University of California, Santa Barbara, California 93106, USA.
39
Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
40
Yale-NUS College, 12 College Avenue West, Singapore 138610.
41
Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 11754.
42
Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, 86280 Centro, Tabasco, México.
43
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands.
44
Bonhoeffer College, Bruggertstraat 60, 7545 AX Enschede, The Netherlands.
45
Museu Paraense Emilio Goeldi, CP 399, CEP 66040-170, Belém, Brazil.
46
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1705, USA.
47
Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.

Abstract

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

PMID:
26840632
DOI:
10.1038/nature16512
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center