Photodegradation of diphenylarsinic acid by UV-C light: Implication for its remediation

J Hazard Mater. 2016 May 5:308:199-207. doi: 10.1016/j.jhazmat.2016.01.049. Epub 2016 Jan 22.

Abstract

Diphenylarsinic acid (DPAA) is a major contaminant in environments polluted by chemical weapons and abandoned after World Wars I and II and poses high risks to biota but remediation methods for this contaminant are rare. Here, the photodegradtion of DPAA was studied under high-pressure Hg lamp irradiation. DPAA was degraded completely into inorganic arsenic species in 30 min under UV-C irradiation. The photodegradation of DPAA depended mainly on its direct photolysis through excited-state DPAA. By contrast, the generation of (1)O2 during the photodegradation of DPAA was confirmed by electron paramagnetic resonance (EPR) studies, but (1)O2 had little effect on the photodegradation of DPAA. Phtotodegradation of DPAA was also studied in soil leachates and groundwater and the photolytic rate of DPAA was controlled by the total organic carbon (TOC) content in soil leachates and by the NO3(-) concentration in groundwater. Finally, studies on the effects of common solutes on the photodegradation of DPAA show that Cl(-) can increase the photolytic rate of DPAA by prolonging the lifetime of excited-state DPAA. Moreover, NO3(-), NO2(-), and humic acid (HA) can decrease the photolytic rate of DPAA by suppressing the production of excited-state DPAA. This research shows the detailed mechanism of DPAA photodegradation and provides a new and effective method for DPAA decontamination.

Keywords: Diphenylarsinic acid; Electron paramagnetic resonance; Photodegradation; Pseudo-first-order kinetics.

Publication types

  • Research Support, Non-U.S. Gov't