Format

Send to

Choose Destination
Front Immunol. 2016 Jan 14;6:663. doi: 10.3389/fimmu.2015.00663. eCollection 2015.

Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines.

Author information

1
Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven , Leuven , Belgium.
2
Laboratory of Experimental and Neuroanatomy, Department of Neurosciences, KU Leuven University of Leuven, Leuven, Belgium; Laboratory of Pharmaceutics and Biopharmaceutics, Université Libre de Bruxelles, Brussels, Belgium.
3
Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Department of Neurosurgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.
4
Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Kinderklinik, RWTH, Aachen, Germany; Immunologic-Oncologic Centre Cologne (IOZK), Köln, Germany.

Abstract

Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings.

KEYWORDS:

antitumor immunity; dendritic cell vaccines; immunogenic cell death; immunogenicity; immunotherapy; tumor lysate

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center