Format

Send to

Choose Destination
Integr Biol (Camb). 2016 Feb;8(2):230-242. doi: 10.1039/c5ib00270b. Epub 2016 Jan 29.

Precisely parameterized experimental and computational models of tissue organization.

Author information

1
Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA.
2
Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA.
3
Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, P.O. Box 208260, New Haven, CT, 06520, USA.
4
Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA.
#
Contributed equally

Abstract

Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function.

PMID:
26822672
PMCID:
PMC4831076
DOI:
10.1039/c5ib00270b
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Royal Society of Chemistry Icon for PubMed Central
Loading ...
Support Center