Send to

Choose Destination
Neurology. 2016 Feb 23;86(8):713-22. doi: 10.1212/WNL.0000000000002404. Epub 2016 Jan 22.

Multiplex families with epilepsy: Success of clinical and molecular genetic characterization.

Author information

From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o



To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis.


Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate.


A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically.


A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center