Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.

Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.

Author information

1
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
2
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute HHMI, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA. Electronic address: doudna@berkeley.edu.

Abstract

Bacteria and archaea possess a range of defense mechanisms to combat plasmids and viral infections. Unique among these are the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems, which provide adaptive immunity against foreign nucleic acids. CRISPR systems function by acquiring genetic records of invaders to facilitate robust interference upon reinfection. In this Review, we discuss recent advances in understanding the diverse mechanisms by which Cas proteins respond to foreign nucleic acids and how these systems have been harnessed for precision genome manipulation in a wide array of organisms.

PMID:
26771484
DOI:
10.1016/j.cell.2015.12.035
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center