Format

Send to

Choose Destination
J Phys Chem B. 2016 Feb 11;120(5):926-35. doi: 10.1021/acs.jpcb.5b11767. Epub 2016 Feb 1.

Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding.

Author information

1
Department of Chemistry, Temple University , 1901 North 13th Street, Beury Hall, Philadelphia, Pennsylvania 19122, United States.

Abstract

Salt-bridge interactions play an important role in stabilizing many protein structures, and have been shown to be designable features for protein design. In this work, we study the effects of non-native salt bridges on the folding of a soluble alanine-based peptide (Fs peptide) using extensive all-atom molecular dynamics simulations performed on the Folding@home distributed computing platform. Using Markov State Models, we show how non-native salt-bridges affect the folding kinetics of Fs peptide by perturbing specific conformational states. Furthermore, we present methods for the automatic detection and analysis of such states. These results provide insight into helix folding mechanisms and useful information to guide simulation-based computational protein design.

PMID:
26769494
DOI:
10.1021/acs.jpcb.5b11767
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center