Format

Send to

Choose Destination
Curr Biol. 2016 Jan 25;26(2):212-218. doi: 10.1016/j.cub.2015.11.058. Epub 2015 Dec 31.

Transcriptional Memory in the Drosophila Embryo.

Author information

1
Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France.
2
Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
3
Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA.
4
Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France.
5
CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France.
6
Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. Electronic address: msl2@princeton.edu.
7
Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; IGMM, CNRS, UMR 5535, Montpellier 34293, France. Electronic address: mounia.lagha@igmm.cnrs.fr.

Abstract

Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.

Comment in

PMID:
26748851
PMCID:
PMC4970865
DOI:
10.1016/j.cub.2015.11.058
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center