Send to

Choose Destination
J Med Chem. 2016 Feb 11;59(3):985-1002. doi: 10.1021/acs.jmedchem.5b01483. Epub 2016 Jan 20.

The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326).

Author information

Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States.
Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom.
Proteros Biostructures GmbH , Bunsenstr. 7aD, 82152 Martinsried, Germany.


Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center