Format

Send to

Choose Destination
Prog Biophys Mol Biol. 2016 Jan;120(1-3):179-88. doi: 10.1016/j.pbiomolbio.2015.12.013. Epub 2015 Dec 29.

Modeling our understanding of the His-Purkinje system.

Author information

1
LIRYC, Institute of Electrophysiology and Cardiac Modeling, Hôpital Xavier Arnozan, avenue Haut-Lévèque, 33600 Pessac, France; Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la Libération, F 33 405 Talence, France; Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada. Electronic address: edward.vigmond@u-bordeaux.fr.
2
LIRYC, Institute of Electrophysiology and Cardiac Modeling, Hôpital Xavier Arnozan, avenue Haut-Lévèque, 33600 Pessac, France; Université de Bordeaux, 351, cours de la Libération, F 33 405 Talence, France; Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, NL A1B 3V6, Canada. Electronic address: stuyvers@mun.ca.

Abstract

The His-Purkinje System (HPS) is responsible for the rapid electric conduction in the ventricles. It relays electrical impulses from the atrioventricular node to the muscle cells and, thus, coordinates the contraction of ventricles in order to ensure proper cardiac pump function. The HPS has been implicated in the genesis of ventricular tachycardia and fibrillation as a source of ectopic beats, as well as forming distinct portions of reentry circuitry. Despite its importance, it remains much less well characterized, structurally and functionally, than the myocardium. Notably, important differences exist with regard to cell structure and electrophysiology, including ion channels, intracellular calcium handling, and gap junctions. Very few computational models address the HPS, and the majority of organ level modeling studies omit it. This review will provide an overview of our current knowledge of structure and function (including electrophysiology) of the HPS. We will review the most recent advances in modeling of the system from the single cell to the organ level, with considerations for relevant interspecies distinctions.

KEYWORDS:

Computer modeling; Electrophysiology; His-Purkinje system; Purkinje fiber

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center