Format

Send to

Choose Destination
Nucleic Acids Res. 2016 Feb 29;44(4):1944-51. doi: 10.1093/nar/gkv1517. Epub 2015 Dec 28.

Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome.

Author information

1
Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
2
Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany wilson@genzentrum.lmu.de.
3
Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany beckmann@lmb.uni-muenchen.de.

Abstract

During protein synthesis, ribosomes become stalled on polyproline-containing sequences, unless they are rescued in archaea and eukaryotes by the initiation factor 5A (a/eIF-5A) and in bacteria by the homologous protein EF-P. While a structure of EF-P bound to the 70S ribosome exists, structural insight into eIF-5A on the 80S ribosome has been lacking. Here we present a cryo-electron microscopy reconstruction of eIF-5A bound to the yeast 80S ribosome at 3.9 Å resolution. The structure reveals that the unique and functionally essential post-translational hypusine modification reaches toward the peptidyltransferase center of the ribosome, where the hypusine moiety contacts A76 of the CCA-end of the P-site tRNA. These findings would support a model whereby eIF-5A stimulates peptide bond formation on polyproline-stalled ribosomes by stabilizing and orienting the CCA-end of the P-tRNA, rather than by directly contributing to the catalysis.

PMID:
26715760
PMCID:
PMC4770232
DOI:
10.1093/nar/gkv1517
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center