Send to

Choose Destination
J Nutr. 2016 Feb;146(2):358-67. doi: 10.3945/jn.115.220749. Epub 2015 Dec 23.

Human Milk Oligosaccharides and Synthetic Galactosyloligosaccharides Contain 3'-, 4-, and 6'-Galactosyllactose and Attenuate Inflammation in Human T84, NCM-460, and H4 Cells and Intestinal Tissue Ex Vivo.

Author information

Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, MA;
Department of Pediatrics, Seoul National University Children's Hospital, Jongno-gu, Seoul, Korea; and.
Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, MA;
Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA



The immature intestinal mucosa responds excessively to inflammatory insult, but human milk protects infants from intestinal inflammation. The ability of galactosyllactoses [galactosyloligosaccharides (GOS)], newly found in human milk oligosaccharides (HMOS), to suppress inflammation was not known.


The objective was to test whether GOS can directly attenuate inflammation and to explore the components of immune signaling modulated by GOS.


Galactosyllactose composition was measured in sequential human milk samples from days 1 through 21 of lactation and in random colostrum samples from 38 mothers. Immature [human normal fetal intestinal epithelial cell (H4)] and mature [human metastatic colonic epithelial cell (T84) and human normal colon mucosal epithelial cell (NCM-460)] enterocyte cell lines were treated with the pro-inflammatory molecules tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β) or infected with Salmonella or Listeria. The inflammatory response was measured as induction of IL-8, monocyte chemoattractant protein 1 (MCP-1), or macrophage inflammatory protein-3α (MIP-3α) protein by ELISA and mRNA by quantitative reverse transcriptase-polymerase chain reaction. The ability of HMOS or synthetic GOS to attenuate this inflammation was tested in vitro and in immature human intestinal tissue ex vivo.


The 3 galactosyllactoses (3'-GL, 4-GL, and 6'-GL) expressed in colostrum rapidly declined over early lactation (P < 0.05). In H4 cells, HMOS attenuated TNF-α- and IL-1β-induced expression of IL-8, MIP-3α, and MCP-1 to 48-51% and pathogen-induced IL-8 and MCP-1 to 26-30% of positive controls (P < 0.001). GOS reduced TNF-α- and IL-1β-induced inflammatory responses to 25-26% and pathogen-induced IL-8 and MCP-1 to 36-39% of positive controls (P < 0.001). GOS and HMOS mitigated nuclear translocation of nuclear transcription factor κB (NF-κB) p65. HMOS quenched the inflammatory response to Salmonella infection by immature human intestinal tissue ex vivo to 26% and by GOS to 50% of infected controls (P < 0.01).


Galactosyllactose attenuated NF-κB inflammatory signaling in human intestinal epithelial cells and in human immature intestine. Thus, galactosyllactoses are strong physiologic anti-inflammatory agents in human colostrum and early milk, contributing to innate immune modulation. The potential clinical utility of galactosyllactose warrants investigation.


Human milk oligosaccharides; colostrum; enteric infection; galactosyllactose; human intestinal epithelium; mucosal immune response

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center