A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves

Artif Cells Nanomed Biotechnol. 2016 Dec;44(8):1949-1957. doi: 10.3109/21691401.2015.1115410. Epub 2015 Dec 24.

Abstract

The study highlights the synthesis of gold nanoparticles and silver nanoparticles by fresh leaves of Panax ginseng, an herbal medicinal plant. The reduction of auric chloride and silver nitrate led to the formation of gold and silver nanoparticles within 3 and 45 min, at 80°C, respectively. The developed methodology was rapid, facile, ecofriendly and the utmost significant is quite economical, which did not require subsequent processing for reduction or stabilization of nanoparticles. The nanoparticles were further characterized by Ultraviolet-visible spectroscopy (UV-vis) which showed the relevant peak for gold and silver nanoparticles at 578 and 420 nm, correspondingly. Field-emission transmission electron microscopy (FE-TEM) displayed the spherical shape of monodispersed nanoparticles. FE-TEM revealed that the gold nanoparticles were 10-20 nm and silver nanoparticles were 5-15 nm. The energy dispersive X-ray (EDX) and elemental mapping results indicated the maximum distribution of gold and silver elements in the respective nanoproducts, which further corresponds the purity. Further, the X-ray diffraction (XRD) results confirm the crystalline nature of synthesized nanoparticles. The biosynthesized AgNPs served as an efficient antimicrobial agent at 3 μg concentration against many pathogenic strains for instance, Escherichia coli, Salmonella enterica, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus anthracis and Bacillus cereus. In addition, AgNPs showed complete inhibition of biofilm formation by S. aureus and Pseudomonas aeruginosa at 4 μg/ml concentration. Moreover, the AuNPs and AgNPs found as a potent anticoagulant agent. Thus, the study claims the rapid synthesis of gold and silver nanoparticles by fresh P. ginseng leaf extract and its biological applications.

Keywords: Anticoagulation; Panax ginseng; antimicrobial activity; biofilm inhibition; gold nanoparticles; silver nanoparticles.

MeSH terms

  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Bacteria / growth & development*
  • Gold* / chemistry
  • Gold* / pharmacology
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure
  • Panax / chemistry*
  • Plant Leaves / chemistry*
  • Silver* / chemistry
  • Silver* / pharmacology

Substances

  • Anti-Bacterial Agents
  • Silver
  • Gold