Format

Send to

Choose Destination
Diabetes. 2016 Jan;65(1):3-13. doi: 10.2337/db15-1028.

Hypomagnesemia in Type 2 Diabetes: A Vicious Circle?

Author information

1
Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
2
Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K. jeroen.debaaij@radboudumc.nl.

Abstract

Over the past decades, hypomagnesemia (serum Mg(2+) <0.7 mmol/L) has been strongly associated with type 2 diabetes mellitus (T2DM). Patients with hypomagnesemia show a more rapid disease progression and have an increased risk for diabetes complications. Clinical studies demonstrate that T2DM patients with hypomagnesemia have reduced pancreatic β-cell activity and are more insulin resistant. Moreover, dietary Mg(2+) supplementation for patients with T2DM improves glucose metabolism and insulin sensitivity. Intracellular Mg(2+) regulates glucokinase, KATP channels, and L-type Ca(2+) channels in pancreatic β-cells, preceding insulin secretion. Moreover, insulin receptor autophosphorylation is dependent on intracellular Mg(2+) concentrations, making Mg(2+) a direct factor in the development of insulin resistance. Conversely, insulin is an important regulator of Mg(2+) homeostasis. In the kidney, insulin activates the renal Mg(2+) channel transient receptor potential melastatin type 6 that determines the final urinary Mg(2+) excretion. Consequently, patients with T2DM and hypomagnesemia enter a vicious circle in which hypomagnesemia causes insulin resistance and insulin resistance reduces serum Mg(2+) concentrations. This Perspective provides a systematic overview of the molecular mechanisms underlying the effects of Mg(2+) on insulin secretion and insulin signaling. In addition to providing a review of current knowledge, we provide novel directions for future research and identify previously neglected contributors to hypomagnesemia in T2DM.

PMID:
26696633
DOI:
10.2337/db15-1028
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center