Format

Send to

Choose Destination
Math J. 2015;17. pii: 7. Epub 2015 Sep 30.

Graphical Representation of Proximity Measures for Multidimensional Data: Classical and Metric Multidimensional Scaling.

Author information

1
University of Rochester Medical Center, 601 Elmwood Avenue - Box 675, Rochester, NY 14618.

Abstract

We describe the use of classical and metric multidimensional scaling methods for graphical representation of the proximity between collections of data consisting of cases characterized by multidimensional attributes. These methods can preserve metric differences between cases, while allowing for dimensional reduction and projection to two or three dimensions ideal for data exploration. We demonstrate these methods with three datasets for: (i) the immunological similarity of influenza proteins measured by a multidimensional assay; (ii) influenza protein sequence similarity; and (iii) reconstruction of airport-relative locations from paired proximity measurements. These examples highlight the use of proximity matrices, eigenvalues, eigenvectors, and linear and nonlinear mappings using numerical minimization methods. Some considerations and caveats for each method are also discussed, and compact Mathematica programs are provided.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center