Format

Send to

Choose Destination
PLoS Comput Biol. 2015 Dec 18;11(12):e1004628. doi: 10.1371/journal.pcbi.1004628. eCollection 2015 Dec.

The Essential Complexity of Auditory Receptive Fields.

Author information

1
Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.
2
Department of Mathematics, Washington State University, Vancouver, Washington, United States of America.

Abstract

Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models.

PMID:
26683490
PMCID:
PMC4684325
DOI:
10.1371/journal.pcbi.1004628
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center