Gold, Silver and Carbon Nanoparticles Grafted on Activated Polymers for Biomedical Applications

J Nanosci Nanotechnol. 2015 Dec;15(12):10053-73. doi: 10.1166/jnn.2015.11689.

Abstract

Organic polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics industry. In case of biomedical polymers is plasma treatment used for enhancing cell adhesion, growth and proliferation and to make them suitable for implants and tissue engineering scaffolds. Nanoparticles fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Nowadays nanoparticles can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. In recent years, focus has turned to therapeutic possibilities for such materials. Structures, which behave as drug carriers, antimicrobial agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications. In this review, we provide insights into immobilization, toxicity and biomedical applications of gold, silver and carbon nanoparticles and discuss their grafting to polymer substrates and the influence on cell-material interactions. The adhesion and the response of cells in contact with the surface play an important role in the cytocompatibility of the implant. It is thus important to understand how cells interact with their environment. The main properties decisive for colonization of a material with cells are surface chemistry, roughness, morphology and polarity, wettability and electrical charge.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomedical Technology*
  • Carbon*
  • Gold*
  • Humans
  • Metal Nanoparticles*
  • Polymers
  • Silver*

Substances

  • Polymers
  • Silver
  • Carbon
  • Gold