Send to

Choose Destination
Oncol Rep. 2016 Mar;35(3):1652-6. doi: 10.3892/or.2015.4490. Epub 2015 Dec 16.

A novel method for endothelial cell isolation.

Author information

National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.


The present study aimed to develop a quick and efficient method for purification of newborn endothelial cells from tumor tissues. Fresh tissues were separated from C57BL/6 mice bearing tumors derived from mouse lung cancer Lewis cells, fully minced and divided into two parts. One part was subjected to collagenase type I digestion with a vortex to form a single-cell suspension, while another part was digested but without a vortex. Then, the CD105+ cells were isolated using anti-CD105 antibody-coated Dynabeads. The isolated CD105+ cells were grown in culture medium and examined for the surface expression of CD105 by a fluorescence-activated cell sorter (FACS). The uptake of acetylated LDL and the ability to maintain capillary tube-like structure formation in the CD105+ cells were also examined by Dil-Ac-LDL uptake assay and tube formation assay. The expression of tumor newborn endothelial cells (CD105+) was tested in Lewis xenografts by immunohistochemistry. The number of cells which were obtained by the digestion process with a vortex was 5.70±0.23x10(4) much higher than the number without a vortex (0.32±0.04x10(4)) (P<0.01). The purity of CD105+ cell digestion with a vortex was significantly higher than that without a vortex. Dil-Ac-LDL uptake assay and tube formation assay confirmed that the CD105+ cells digested with a vortex exhibited typical functions of endothelial cells. In conclusion, the CD105+ cells isolated by the new method had high purity and displayed features of vascular endothelial cells. The modified method provides CD105+ cells with superior conditions for mechanistic research on the development of vessel-based disease.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Spandidos Publications
Loading ...
Support Center