Format

Send to

Choose Destination
J Breath Res. 2015 Dec 15;9(4):047114. doi: 10.1088/1752-7155/9/4/047114.

Extended nitric oxide analysis may improve personalized anti-inflammatory treatment in asthmatic children with intermediate F(E)NO50.

Author information

1
Respiratory, Allergy and Sleep Research, Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Centre for Clinical Research, Uppsala University/Region Gävleborg, Uppsala, Sweden.

Abstract

Exhaled nitric oxide (F(E)NO) is elevated in asthma, and a clinical practice guideline has been published with recommendations for anti-inflammatory treatment. It summarizes that a F(E)NO at an expiratory flow rate of 50 ml s(-1) (F(E)NO50) above 35 ppb in children indicates eosinophilic inflammation, and the most likely response is to use inhaled corticosteroids. Intermediate F(E)NO50 between 20-35 ppb should be interpreted cautiously. The aim of the study was to investigate this guideline in a small group of asthmatic children. Thirty-seven asthmatic children; 23 boys and 14 girls, visited the outpatient clinic, and provided exhaled breath samples for offline NO measurement. These samples were analysed with chemiluminescence techniques. Three flow rates, namely 16, 90 and 230 ml s(-1) were used for the extended NO analysis (Högman-Meriläinen algorithm, HMA) to estimate the alveolar concentration (C(A)NO), diffusion rate of the airway wall (D(aw)NO) and airway wall content (C(aw)NO). For accuracy of the HMA, the estimated value of F(E)NO at 50 ml s(-1) (F(E)NO50) was compared with measured F(E)NO50. In nine children the difference was more than 5 ppb and the data were therefore excluded. Five children with F(E)NO50 <20 ppb had no known allergy and their F(E)NO50 geometrical mean (25th; 75th percentile) was 11 (10;14) and CawNO was 32 (20;43) ppb. Ten children with F(E)NO50  >  35 ppb had an allergy and had F(E)NO50 of 56 (47;60) ppb and C(aw)NO of 140 (121;172) ppb. Thirteen children with allergies, with intermediate F(E)NO50, had F(E)NO50 of 27 (25;30) ppb with a wide range of C(aw)NO. In five of these children, values were comparable to healthy children, 44 (43;50) ppb while eight children had elevated C(aw)NO values of 108 (95;129) ppb. Our data indicate the clinical potential use of extended NO analysis to determine the personal target value of F(E)NO50 for monitoring the treatment outcome. Furthermore, for children with intermediate F(E)NO50 more than half of them could possibly benefit from an adjustment of inhaled corticosteroids if the C(aw)NO value was considered.

PMID:
26670199
DOI:
10.1088/1752-7155/9/4/047114
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center