Format

Send to

Choose Destination
Plant Physiol. 2016 Feb;170(2):971-88. doi: 10.1104/pp.15.01722. Epub 2015 Dec 8.

Maize reas1 Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses.

Author information

1
Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S).
2
Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S) rentaosong@staff.shu.edu.cn.

Abstract

Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis.

PMID:
26645456
PMCID:
PMC4734584
DOI:
10.1104/pp.15.01722
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center