Format

Send to

Choose Destination
Neuron. 2015 Dec 2;88(5):910-917. doi: 10.1016/j.neuron.2015.11.009.

Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms.

Author information

1
Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
2
Departments of Neuroscience, Genetics, and Psychiatry, and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
3
Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Paediatrics Academic Clinical Programme, Duke-NUS Graduate School of Medicine, Singapore.
4
Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address: christopher.walsh@childrens.harvard.edu.

Abstract

Single nucleotide variants (SNVs), particularly loss-of-function mutations, are significant contributors to autism spectrum disorder (ASD) risk. Here we report the first systematic deep sequencing study of 55 postmortem ASD brains for SNVs in 78 known ASD candidate genes. Remarkably, even without parental samples, we find more ASD brains with mutations that are protein-altering (26/55 cases versus 12/50 controls, p = 0.015), deleterious (16/55 versus 5/50, p = 0.016), or loss-of-function (6/55 versus 0/50, p = 0.028) compared to controls, with recurrent deleterious mutations in ARID1B, SCN1A, SCN2A, and SETD2, suggesting these mutations contribute to ASD risk. In several cases, the identified mutations and medical records suggest syndromic ASD diagnoses. Two ASD and one Fragile X premutation case showed deleterious somatic mutations, providing evidence that somatic mutations occur in ASD cases, and supporting a model in which a combination of germline and/or somatic mutations may contribute to ASD risk on a case-by-case basis.

PMID:
26637798
PMCID:
PMC4672379
DOI:
10.1016/j.neuron.2015.11.009
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center