Send to

Choose Destination
Gene. 1989 Mar 15;76(1):41-52.

Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine.

Author information

Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, U.K.


To investigate the genetic basis of drug resistance in human malaria parasites, we have sequenced the entire dihydrofolate reductase thymidylate synthetase DHFR-TS bifunctional gene from the highly pyrimethamine-resistant K1 isolate of Plasmodium falciparum. The protein is predicted to consist of 607 amino acids (aa), (71,685 Da), with an N-terminal methionine encoded by the second start codon of the open reading frame. Compared to the sequence from drug-sensitive parasites, there are two nucleotide changes in the coding region which bring about a substitution of Arg for Cys at aa position 59 and Asn for Thr at aa position 108. Both changes occur in regions of the DHFR domain involved in inhibitor and cofactor binding and are hence strongly implicated in drug resistance. The gene is present as a single copy in both K1 and drug-sensitive FCR3 isolates, and is assigned to chromosome 4. Codon usage follows the pattern observed in that of malarial surface antigen genes, with the exception fo codons corresponding to Val and Pro. The Asn and Lys contents of the predicted protein are exceptionally high, these residues being particularly concentrated in the DHFR and junction domains.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center