#### Send to
jQuery(document).ready( function () {
jQuery("#send_to_menu input[type='radio']").click( function () {
var selectedValue = jQuery(this).val().toLowerCase();
var selectedDiv = jQuery("#send_to_menu div." + selectedValue);
if(selectedDiv.is(":hidden")){
jQuery("#send_to_menu div.submenu:visible").slideUp();
selectedDiv.slideDown();
}
});
});
jQuery("#sendto").bind("ncbipopperclose", function(){
jQuery("#send_to_menu div.submenu:visible").css("display","none");
jQuery("#send_to_menu input[type='radio']:checked").attr("checked",false);
});

# Challenges of Inversely Estimating Jacobian from Metabolomics Data.

### Author information

- 1
- Department of Ecogenomics and Systems Biology, University of Vienna , Vienna , Austria ; Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom.
- 2
- Department of Ecogenomics and Systems Biology, University of Vienna , Vienna , Austria.
- 3
- Department of Ecogenomics and Systems Biology, University of Vienna , Vienna , Austria ; Vienna Metabolomics Center (VIME), University of Vienna , Vienna , Austria.

### Abstract

Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al., 2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined system of equations as JC + CJ(T) = -2D, called Lyapunov Equation in its generic form, where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization, and truncated singular value decomposition. Then, we benchmarked these methods on several in silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C, and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data.

#### KEYWORDS:

Jacobian; Lyapunov Equation; ill-posed problems; inverse engineering; metabolomics

- PMID:
- 26636075
- PMCID:
- PMC4649029
- DOI:
- 10.3389/fbioe.2015.00188