Format

Send to

Choose Destination
J Neurosci. 2015 Dec 2;35(48):15921-33. doi: 10.1523/JNEUROSCI.0693-15.2015.

ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis.

Author information

1
Department of Neurology, University of Chicago, Chicago, Illinois 60637.
2
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and.
3
Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90089.
4
Department of Neurology, University of Chicago, Chicago, Illinois 60637, bpopko@neurology.bsd.uchicago.edu.

Abstract

Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination.

KEYWORDS:

ER stress; mouse models; protein homeostasis; unfolded protein response

PMID:
26631473
PMCID:
PMC4666917
DOI:
10.1523/JNEUROSCI.0693-15.2015
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center