Send to

Choose Destination
Neuro Oncol. 2016 Feb;18(2):173-83. doi: 10.1093/neuonc/nov288. Epub 2015 Nov 30.

Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, -2, and -3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas.

Author information

Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany (P.B., A.-E.B., M.D., P.Z., K.H., L.M., K.H.P., P.N.H., M.Mi.); Department of Neurosurgery, Goethe University, Frankfurt, Germany (K.F., V.S.); Dr. Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany (K.F., O.B., J.P.S.); Department of Neuroradiology, University of Frankfurt am Main, Frankfurt am Main, Germany (E.H.); Department of Neurosurgery, University Hospital, Freiburg, Germany (M.Ma.); Cancer Consortium (DKTK), Heidelberg, Germany (O.B., J.P.S., K.H.P, P.N.H., M.Mi.); German Cancer Research Center (DKFZ), Heidelberg, Germany (O.B., J.P.S., K.H.P., P.N.H., M.Mi.); Department of Pathology, University of Heidelberg, Heidelberg, Germany (B.G.).



A major hallmark of malignant progression in human astrocytomas is the formation of new blood vessels. Antiangiogenic therapy using the anti-vascular endothelial growth factor (VEGF)-antibody bevacizumab leads to increased progression-free survival in glioblastoma patients but does not influence their overall survival. To date, it is unclear why antiangiogenic therapy fails in many glioblastoma patients, while a small subpopulation profits considerably from this treatment.


The aim of our study was to determine the expression of VEGF-A and its (co-) receptors by immunohistochemistry and to test the association with patient survival in 350 glioma patients. Additionally, VEGF-A expression was analyzed by in-situ hybridization. In 18 patients, the protein expression was compared with the bevacizumab response according to extended and modified RANO criteria.


We found a heterogeneous expression pattern of VEGF and its receptors in glioblastoma patients with significantly lower levels in WHO grade II and III tumors and normal-appearing brain tissue (P < .001). Pilocytic astrocytomas (WHO grade I) showed significantly higher VEGFR-1, -2 and neuropilin-1 levels as compared to WHO grade II and III astrocytomas (P < .01) but at lower levels than glioblastomas. The expression of neuropilin-2 was low in all tumors. There was neither a significant correlation between protein expression and patient survival nor between protein levels and bevacizumab response after modified RANO criteria.


Since our data indicate that beneficial response to bevacizumab treatment is independent of the expression of VEGF-A and its (co-) receptors, further investigation is needed to decipher the underlying mechanisms of antiangiogenic treatment response.


VEGF; VEGF receptors; antiangiogenic therapy; bevacizumab; glioma

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center