Send to

Choose Destination
See comment in PubMed Commons below
Am Heart J. 1989 Jul;118(1):144-54.

Effect of cimetidine and ranitidine on cardiovascular drugs.

Author information

Department of Pharmacy Services, University Hospitals of Cleveland, OH 44106.


A compilation of drug interactions between H2 antagonists and cardiovascular drugs is found in Table I. Cimetidine's potency, lipophilicity, and affinity for binding to the P-450 cytochrome system can probably be attributed to the drug interactions that have been identified with the H2 antagonists. The mechanism for most cimetidine drug interactions is inhibition of hepatic metabolism. There is conflicting evidence regarding significance of altered liver blood flow for both cimetidine and ranitidine and their influence on other agents. Cimetidine may increase propranolol's blood concentrations and potentiate beta blocking effects through inhibition of hepatic microsomal enzymes and possibly through reduction of hepatic blood flow. Ranitidine has no effect on propranolol. Cimetidine, when administered concurrently with metoprolol, could possibly cause an increase in plasma metoprolol concentrations or bioavailability through inhibition of hepatic P-450 metabolizing enzymes. No effect of cimetidine on metoprolol pharmacodynamics was evident. Ranitidine has no effect on metoprolol pharmacokinetics or pharmacodynamics. Neither H2 antagonist altered the kinetics or physiologic effects of atenolol. Atenolol is the drug of choice in patients receiving H2 antagonists, since no interaction has been observed. Metoprolol could probably be used safely in most patients, as no change in pharmacodynamics has been evident. Concurrent administration of cimetidine and nifedipine may result in alterations in heart rate and blood pressure. The mechanism is inhibition of oxidative liver metabolism. Ranitidine has no effect on nifedipine. Studies are needed to investigate the interaction between the H2 antagonists and diltiazem or verapamil. Cimetidine, given concomitantly with lidocaine, may increase lidocaine concentrations and clinical symptoms of lidocaine toxicity. The mechanism involved is probably a reduction in oxidative drug metabolism or liver blood flow. Ranitidine has no significant effects on lidocaine pharmacokinetics. Cimetidine may increase quinidine levels and symptoms of quinidine toxicity. Additionally, enhanced arrhythmic effects may be observed. The interaction probably caused by an inhibition of hepatic drug metabolism of quinidine by cimetidine would be most significant in patients with liver disease and in the elderly. Ranitidine may enhance quinidine's arrhythmic effect. Cimetidine can possibly increase procainamide and NAPA serum concentrations, especially in the elderly and in patients with renal dysfunction, predisposing them to adverse side effects. The interaction is mediated by a reduction of tubular secretion of procainamide and NAPA.

Comment in

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center