Format

Send to

Choose Destination
J Chem Theory Comput. 2009 Sep 8;5(9):2420-35. doi: 10.1021/ct900298e. Epub 2009 Aug 11.

Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.

Author information

1
Groupe de Chimie-Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, and Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France.

Abstract

Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.

PMID:
26616623
DOI:
10.1021/ct900298e

Supplemental Content

Loading ...
Support Center