Format

Send to

Choose Destination
Stem Cell Reports. 2015 Nov 10;5(5):753-762. doi: 10.1016/j.stemcr.2015.09.011.

Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair.

Author information

1
Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA.
2
Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA; School of Medicine, University of Sydney, Sydney, NSW 2006, Australia; Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia.
3
Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
4
McEwen Centre for Regenerative Medicine, Ontario Cancer Institute, Toronto, ON M5G 2M9, Canada.
5
Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA. Electronic address: murry@uw.edu.

Abstract

Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) can improve the contractility of injured hearts.We hypothesized that mesodermal cardiovascular progenitors (hESC-CVPs), capable of generating vascular cells in addition to cardiomyocytes, would provide superior repair by contributing to multiple components of myocardium. We performed a head-to-head comparison of hESC-CMs and hESC-CVPs and compared these with the most commonly used clinical cell type, human bone marrow mononuclear cells (hBMMNCs). In a nude rat model of myocardial infarction, hESC-CMs and hESC-CVPs generated comparable grafts. Both similarly improved systolic function and ventricular dilation. Furthermore, only rare human vessels formed from hESC-CVPs. hBM-MNCs attenuated ventricular dilation and enhanced host vascularization without engrafting long-term or improving contractility. Thus, hESC-CMs and CVPs show similar efficacy for cardiac repair, and both are more efficient than hBM-MNCs. However, hESC-CVPs do not form larger grafts or more significant numbers of human vessels in the infarcted heart.

PMID:
26607951
PMCID:
PMC4649260
DOI:
10.1016/j.stemcr.2015.09.011
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center